277 research outputs found

    Substituting a qubit for an arbitrarily large number of classical bits

    Full text link
    We show that a qubit can be used to substitute for an arbitrarily large number of classical bits. We consider a physical system S interacting locally with a classical field phi(x) as it travels directly from point A to point B. The field has the property that its integrated value is an integer multiple of some constant. The problem is to determine whether the integer is odd or even. This task can be performed perfectly if S is a qubit. On the otherhand, if S is a classical system then we show that it must carry an arbitrarily large amount of classical information. We identify the physical reason for such a huge quantum advantage, and show that it also implies a large difference between the size of quantum and classical memories necessary for some computations. We also present a simple proof that no finite amount of one-way classical communication can perfectly simulate the effect of quantum entanglement.Comment: 8 pages, LaTeX, no figures. v2: added result on entanglement simulation with classical communication; v3: minor correction to main proof, change of title, added referenc

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Spin-torque driven magnetic vortex self-oscillations in perpendicular magnetic fields

    Full text link
    We have employed complete micromagnetic simulations to analyze dc current driven self-oscillations of a vortex core in a spin-valve nanopillar in a perpendicular field by including the coupled effect of the spin-torque and the magnetostatic field computed self-consistently for the entire spin-valve. The vortex in the thicker nanomagnet moves along a quasi-elliptical trajectory that expands with applied current, resulting in blue-shifting of the frequency, while the magnetization of the thinner nanomagnet is non-uniform due to the bias current. The simulations explain the experimental magnetoresistance-field hysteresis loop and yield good agreement with the measured frequency vs. current behavior of this spin-torque vortex oscillator.Comment: 10 pages, 3 figures, to be appear on AP

    Causality and Cirel'son bounds

    Get PDF
    An EPR-Bell type experiment carried out on an entangled quantum system can produce correlations stronger than allowed by local realistic theories. However there are correlations that are no-signaling and are more non local than the quantum correlations. Here we show that any correlations more non local than those achievable in an EPR-Bell type experiment necessarily allow -in the context of the quantum formalism- both for signaling and for generation of entanglement. We use our approach to rederive Cirel'son bound for the CHSH expression, and we derive a new Cirel'son type bound for qutrits. We discuss in detail the interpretation of our approach.Comment: 5 page

    Quantum Nonlocal Boxes Exhibit Stronger Distillability

    Full text link
    The hypothetical nonlocal box (\textsf{NLB}) proposed by Popescu and Rohrlich allows two spatially separated parties, Alice and Bob, to exhibit stronger than quantum correlations. If the generated correlations are weak, they can sometimes be distilled into a stronger correlation by repeated applications of the \textsf{NLB}. Motivated by the limited distillability of \textsf{NLB}s, we initiate here a study of the distillation of correlations for nonlocal boxes that output quantum states rather than classical bits (\textsf{qNLB}s). We propose a new protocol for distillation and show that it asymptotically distills a class of correlated quantum nonlocal boxes to the value 1/2(33+1)3.0980761/2 (3\sqrt{3}+1) \approx 3.098076, whereas in contrast, the optimal non-adaptive parity protocol for classical nonlocal boxes asymptotically distills only to the value 3.0. We show that our protocol is an optimal non-adaptive protocol for 1, 2 and 3 \textsf{qNLB} copies by constructing a matching dual solution for the associated primal semidefinite program (SDP). We conclude that \textsf{qNLB}s are a stronger resource for nonlocality than \textsf{NLB}s. The main premise that develops from this conclusion is that the \textsf{NLB} model is not the strongest resource to investigate the fundamental principles that limit quantum nonlocality. As such, our work provides strong motivation to reconsider the status quo of the principles that are known to limit nonlocal correlations under the framework of \textsf{qNLB}s rather than \textsf{NLB}s.Comment: 25 pages, 7 figure

    Classical and quantum partition bound and detector inefficiency

    Full text link
    We study randomized and quantum efficiency lower bounds in communication complexity. These arise from the study of zero-communication protocols in which players are allowed to abort. Our scenario is inspired by the physics setup of Bell experiments, where two players share a predefined entangled state but are not allowed to communicate. Each is given a measurement as input, which they perform on their share of the system. The outcomes of the measurements should follow a distribution predicted by quantum mechanics; however, in practice, the detectors may fail to produce an output in some of the runs. The efficiency of the experiment is the probability that the experiment succeeds (neither of the detectors fails). When the players share a quantum state, this gives rise to a new bound on quantum communication complexity (eff*) that subsumes the factorization norm. When players share randomness instead of a quantum state, the efficiency bound (eff), coincides with the partition bound of Jain and Klauck. This is one of the strongest lower bounds known for randomized communication complexity, which subsumes all the known combinatorial and algebraic methods including the rectangle (corruption) bound, the factorization norm, and discrepancy. The lower bound is formulated as a convex optimization problem. In practice, the dual form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality (for eff) or Tsirelson inequality (for eff*). We give an example of a quantum distribution where the violation can be exponentially bigger than the previously studied class of normalized Bell inequalities. For one-way communication, we show that the quantum one-way partition bound is tight for classical communication with shared entanglement up to arbitrarily small error.Comment: 21 pages, extended versio

    Nonlocality as a Benchmark for Universal Quantum Computation in Ising Anyon Topological Quantum Computers

    Get PDF
    An obstacle affecting any proposal for a topological quantum computer based on Ising anyons is that quasiparticle braiding can only implement a finite (non-universal) set of quantum operations. The computational power of this restricted set of operations (often called stabilizer operations) has been studied in quantum information theory, and it is known that no quantum-computational advantage can be obtained without the help of an additional non-stabilizer operation. Similarly, a bipartite two-qubit system based on Ising anyons cannot exhibit non-locality (in the sense of violating a Bell inequality) when only topologically protected stabilizer operations are performed. To produce correlations that cannot be described by a local hidden variable model again requires the use of a non-stabilizer operation. Using geometric techniques, we relate the sets of operations that enable universal quantum computing (UQC) with those that enable violation of a Bell inequality. Motivated by the fact that non-stabilizer operations are expected to be highly imperfect, our aim is to provide a benchmark for identifying UQC-enabling operations that is both experimentally practical and conceptually simple. We show that any (noisy) single-qubit non-stabilizer operation that, together with perfect stabilizer operations, enables violation of the simplest two-qubit Bell inequality can also be used to enable UQC. This benchmarking requires finding the expectation values of two distinct Pauli measurements on each qubit of a bipartite system.Comment: 12 pages, 2 figure

    Tighter Relations Between Sensitivity and Other Complexity Measures

    Full text link
    Sensitivity conjecture is a longstanding and fundamental open problem in the area of complexity measures of Boolean functions and decision tree complexity. The conjecture postulates that the maximum sensitivity of a Boolean function is polynomially related to other major complexity measures. Despite much attention to the problem and major advances in analysis of Boolean functions in the past decade, the problem remains wide open with no positive result toward the conjecture since the work of Kenyon and Kutin from 2004. In this work, we present new upper bounds for various complexity measures in terms of sensitivity improving the bounds provided by Kenyon and Kutin. Specifically, we show that deg(f)^{1-o(1)}=O(2^{s(f)}) and C(f) < 2^{s(f)-1} s(f); these in turn imply various corollaries regarding the relation between sensitivity and other complexity measures, such as block sensitivity, via known results. The gap between sensitivity and other complexity measures remains exponential but these results are the first improvement for this difficult problem that has been achieved in a decade.Comment: This is the merged form of arXiv submission 1306.4466 with another work. Appeared in ICALP 2014, 14 page

    Catalytic space: Non-determinism and hierarchy

    Get PDF
    corecore